Osculating and neighbour-avoiding polygons on the square lattice*
نویسنده
چکیده
We study two simple modifications of self-avoiding polygons (SAPs). Osculating polygons (OP) are a super-set in which we allow the perimeter of the polygon to touch at a vertex. Neighbour-avoiding polygons (NAP) are only allowed to have nearest-neighbour vertices provided these are joined by the associated edge and thus form a sub-set of SAPs. We use the finite lattice method to count the number of OP and NAP on the square lattice. We also calculate their radius of gyration and the first area-weighted moment. Analysis of the series confirms exact predictions for the critical exponents and the universality of various amplitude combinations. For both cases we have found exact solutions for the number of convex and almost-convex polygons. PACS numbers: 05.50.+q, 02.10.b, 05.40.Fb, 64.60.−i
منابع مشابه
Self-avoiding walks and trails on the 3.12 lattice
We find the generating function of self-avoiding walks and trails on a semi-regular lattice called the 3.122 lattice in terms of the generating functions of simple graphs, such as self-avoiding walks, polygons and tadpole graphs on the hexagonal lattice. Since the growth constant for these graphs is known on the hexagonal lattice we can find the growth constant for both walks and trails on the ...
متن کاملSelf-avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...
متن کاملS ep 2 00 4 Self - avoiding walks and polygons on the triangular lattice
We use new algorithms, based on the finite lattice method of series expansion, to extend the enumeration of self-avoiding walks and polygons on the triangular lattice to length 40 and 60, respectively. For self-avoiding walks to length 40 we also calculate series for the metric properties of mean-square end-to-end distance, mean-square radius of gyration and the mean-square distance of a monome...
متن کامل1 1 O ct 2 00 4 Self - avoiding walks and trails on the 3 . 12 2 lattice Anthony
We find the generating function of self-avoiding walks and trails on a semi-regular lattice called the 3.122 lattice in terms of the generating functions of simple graphs, such as self-avoiding walks, polygons and tadpole graphs on the hexagonal lattice. Since the growth constant for these graphs is known on the hexagonal lattice we can find the growth constant for both walks and trails on the ...
متن کاملSelf-avoiding walks and trails on the 3.122 lattice
We find the generating function of self-avoiding walks (SAWs) and trails on a semi-regular lattice called the 3.122 lattice in terms of the generating functions of simple graphs, such as SAWs, self-avoiding polygons and tadpole graphs on the hexagonal lattice. Since the growth constant for these graphs is known on the hexagonal lattice we can find the growth constant for both walks and trails o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001